Reg. No.							
----------	--	--	--	--	--	--	--

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

PG DEGREE END SEMESTER EXAMINATIONS - APRIL 2025.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: M.Sc., INFORMATION TECHNOLOGY

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
III	PART - III	CORE - 4	P23IT304	SOFT COMPUTING

		AICI -					MI OTING	
Date	& Sessi	ion:23.	.04.2025/FN	Time: 3	Hours	Maxii	mum 75 Marks	
Course Outcome	Bloom's K-level	Q. No.	SECTION - A (10 X 1 = 10 Marks) Answer ALL Questions.					
CO1	K1	1.	Soft computing differs a) Precise data c) High-speed calcula			ity and approxim		
CO1	K2	2.		The McCulloch-Pitts neuron model uses: a) Continuous activation b) Threshold logic c) Fuzzy sets d) Genetic operators				
CO2	K1	3.	Backpropagation is a a) Multilayer perceptr c) Hopfield networks	ons	orithm used b) Kohonen d) ART netw	networks		
CO2	K2	4.	In a Radial Basis Fun a) Sigmoid	ction Networ o) Gaussian	•	ation function is function	typically: d) Linear	
CO3	K1	5.	A fuzzy set allows men a) {0, 1} b	mbership val) [0, 1]			d) [0, ∞)	
CO3	K2	6.	The defuzzification membership value is: a) Centroid b			tput with the hig thted average		
CO4	K1	7.	The extension princip a) Extend crisp functi c) Optimize genetic al	ons to fuzzy	sets b) D			
CO4	K2	8.	In fuzzy decision-mak a) Combining anteced c) Fuzzifying inputs		b) C	refers to: ombining conseq efuzzifying outpu	-	
CO5	K1	9.	Crossover in genetic a a) Combine parent so c) Select the fittest inc	lutions	b) M	lutate genes nitialize the popu	lation	
CO5	K2	10.	The schema theorem a) Mutation rates c) Population diversity		b) S	olains: urvival of high-fi ncoding methods		
Course	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B}{\text{Answer }} \text{ All Questions choosing either (a) or (b)}$					
CO1	К3	11a.	Compare soft comput imprecision, adaptabi	_	1 0		ance for	

CO1	КЗ	11b.	Explain the learning process in artificial neural networks with a focus on weight adjustment and error minimization.
CO2	КЗ	12a.	Design a perceptron to implement the AND logic gate. Include the activation function and weight updates (OR)
CO2	КЗ	12b.	Describe the working of a Hopfield network and its application in associative memory.
CO3	K4	13a.	Perform the union and intersection operations on two fuzzy sets (A = { $(x_1, 0.3), (x_2, 0.7)$ }) and (B = { $(x_1, 0.5), (x_2, 0.4)$ }).
CO3	K4	13b.	Explain the centroid method of defuzzification with a numerical example.
CO4	K4	14a.	Apply the extension principle to compute the fuzzy output (C = A + B), where $(A = \{ (1, 0.2), (2, 0.5) \})$ and $(B = \{ (3, 0.4), (4, 0.6) \})$.
CO4	K4	14b.	Discuss the role of fuzzy inference systems in decision-making with an example.
CO5	К3	15a.	Implement a simple Genetic Algorithm to maximize the function $f(x)=x^2$ for $x \in [0,15]$. Include encoding, selection, and crossover steps. (OR)
CO5	КЗ	15b.	Analyze the schema theorem and its implications for the survival of high-fitness schemata in genetic algorithms.

Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \underline{\text{ALL}}} \text{ Questions choosing either (a) or (b)}$
CO1	К3	16a.	Design a Hebbian learning-based neural network for pattern recognition and simulate its training process for a sample dataset. (OR)
CO1	КЗ	16b.	Critically evaluate the limitations of McCulloch-Pitts neurons in modeling real-world problems and suggest improvements.
CO2	K4	17a.	Develop a backpropagation neural network to solve the XOR problem. Include architecture, activation functions, and training steps. (OR)
CO2	K4	17b.	Compare supervised vs. unsupervised learning in neural networks, focusing on applications like classification and clustering.
CO3	K4	18a.	Design a fuzzy logic controller for an air-conditioning system that adjusts temperature based on humidity and occupancy. Define membership functions and rules. (OR)
CO3	K4	18b.	Prove that fuzzy relations are closed under max-min composition and demonstrate with an example.
CO4	K5	19a.	Optimize a fuzzy decision-making system for traffic light control under varying traffic densities. Use fuzzy arithmetic and defuzzification. (OR)
CO4	K5	19b.	Investigate the stability of fuzzy logic controllers and discuss methods to avoid oscillations in output.
CO5	K5	20a.	Propose a genetic algorithm to solve the Traveling Salesman Problem (TSP). Define encoding, fitness function, and genetic operators. (OR)
CO5	K5	20b.	Analyze the role of mutation in maintaining genetic diversity and preventing premature convergence in genetic algorithms.